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Complex body movements require complex dynamics and coor-
dination among neurons in motor cortex. Conversely, a long-
standing theoretical notion supposes that if many neurons in
motor cortex become excessively synchronized, they may lack the
necessary complexity for healthy motor coding. However, direct
experimental support for this idea is rare and underlying mech-
anisms are unclear. Here we recorded three-dimensional body
movements and spiking activity of many single neurons in motor
cortex of rats with enhanced synaptic inhibition and a transgenic
rat model of Rett syndrome (RTT). For both cases, we found a
collapse of complexity in the motor system. Reduced complex-
ity was apparent in lower-dimensional, stereotyped brain–body
interactions, neural synchrony, and simpler behavior. Our results
demonstrate how imbalanced inhibition can cause excessive syn-
chrony among movement-related neurons and, consequently, a
stereotyped motor code. Excessive inhibition and synchrony may
underlie abnormal motor function in RTT.
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A diverse and complex repertoire of body movements requires
diverse and complex neural activity among cortical neu-

rons. Moreover, interactions between movement-related neu-
rons and the body must be sufficiently high dimensional to carry
these movement signals with high fidelity. The complexity of
movement-related neural activity and neuron–body interactions
can be compromised if synchrony among neurons is excessive.
Indeed, it is well understood theoretically that excessive corre-
lations can limit the information capacity of any neural code
(1–3)—if all neurons are perfectly synchronized, then different
neurons cannot encode different motor signals. Synchrony is also
known to play a role in pathophysiology of movement-related
disorders, like Parkinson’s disease (4–6). However, synchrony
and correlations also contribute to healthy function in the motor
system (7–14). For instance, particular groups of synchronized
neurons seem to send control signals to particular muscle groups
(7, 8) and propagation of correlated firing contributes to motor
planning (10). Synchrony can also play a role in motor learning
(12–14). These findings suggest that correlated activity among
specific subsets of neurons encodes specific motor functions.
Thus, it stands to reason that if this synchrony became less
selective and more stereotyped across neurons, then the motor
code would become less complex and lose specificity, resulting in
compromised motor function.

Here we explored this possibility in rats, in the caudal part of
motor cortex where neurons associated with hindlimb, forelimb,
and trunk body movement are located (15–17). We focused
on two conditions. First, we studied a transgenic rat model of
Rett syndrome (RTT), which has disrupted expression of the
MeCP2 gene. Second, we studied normal rats with acutely altered
inhibitory neural interactions. Both of these cases are associ-
ated with abnormal motor behavior and, possibly, abnormal
synchrony. Abnormal synchrony is a possibility, because both of
these cases are linked to an imbalance between excitatory (E)
and inhibitory (I) neural interactions, which in turn is likely to
result in abnormal synchrony. For instance, many computational
models suggest that synchrony is strongly dependent on E/I

interactions (18–21). Likewise, in experiments, pharmacological
manipulation of E/I causes changes in synchrony (19, 22, 23)
and the excessive synchrony that occurs during epileptic seizures
is often attributed to an E/I imbalance (24, 25). Similarly, the
majority of people with RTT suffer from seizures (26) and many
previous studies establish E/I imbalance as a common problem
in RTT (27). MeCP2 dysfunction, which is known to cause RTT,
seems to be particularly important in inhibitory neurons (28). For
instance, two studies have shown that disrupting MeCP2 only in
specific inhibitory neuron types can recapitulate the effects of
brain-wide disruption of MeCP2 (29, 30). However, whether the
E/I imbalance favors E or I at the population level seems to vary
across different brain regions in RTT. Studies of visual cortex (29)
and hippocampus (31) suggest that the balance tips toward too
much excitation (perhaps explaining the prevalence of seizures),
while studies of somatosensory cortex (32, 33) and a brain-wide
study of Fos expression (34) suggest that frontal areas, including
motor cortex, are tipped toward excessive inhibition. These facts
motivated our choice to study pharmacological disruption of
inhibition here. While it is clear that E/I imbalance is important
in RTT, it is much less clear how it manifests at the level of
dynamics and complexity of neural activity that is responsible
for coordinating body movements. Thus, in addition to pursuing
the general questions about synchrony and complexity in the
motor system discussed above, a second goal of our work was
to improve understanding of motor dysfunction due to MeCP2
disruption.

Taken together, these facts led us to the following questions:
How does MeCP2 disruption impact the complexity of body
movements, movement-related neural activity, and motor cod-
ing? Are abnormalities in the MeCP2-disrupted motor system
consistent with excessive inhibition in motor cortex? We hypothe-
sized that both MeCP2 disruption and excessive inhibition lead to
reduced complexity of interactions between cortical neurons and
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body movements, excessive cortical synchrony, and reduced com-
plexity of body movements. Our findings confirmed this hypoth-
esis and suggest that RTT-related motor dysfunction may be due,
in part, to excessive synchrony and inhibition in motor cortex.

Results
We performed simultaneous measurements of body movements
and spiking activity of many single neurons in motor cortex
of rats (Fig. 1 A–C). We compared five different experimental
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Fig. 1. Reduced complexity of brain–body interactions due to MeCP2 disruption and excessive inhibition in motor cortex. (A) Diagram of electrode array
(black dots) and microcannula (white dot) locations relative to approximate map of caudal forelimb motor area (green) and hindlimb motor area (blue).
(B) Motion tracking beads were located along the spine from head to tail and on rear hips. Shown are example three-dimensional trajectories of tracking
beads during one recording. Rat cartoon is drawn to approximate scale with these axes. (C) Single-unit neural activity (Top) and body movement (Bottom)
were recorded simultaneously. Colors indicate corresponding bead locations shown in B. (D) Spike-triggered average body speed functions (BCCFs) for two
example recordings (Top). Note diverse shapes of BCCFs for recording 1 and stereotyped BCCF shapes for recording 2. (Bottom) Distributions of similarity for
all pairs of BCCFs for the two example recordings. Motor code stereotypy was defined as the average similarity across all BCCF pairs for each recording. (E)
Motor code stereotypy was lowest in normal rats. RTT rats and conditions with elevated inhibition had significantly increased motor code stereotypy (**P <
0.01, t test). Dark and light boxes delineate 0.25 to 0.75 and 0.05 to 0.95 quantiles, respectively. Lines mark median (white, red) and mean (black). (F) Time
series of neural activity (black) and bead speeds (red) projected onto CCA dimensions. Note that correlations (blue number) between neurons and body are
decreasing from CC1 to CC8. Insignificance of correlations (gray shading) was determined by comparison to time-shuffled data (Materials and Methods).
(G) CCA dimensionality is the number of significantly correlated CCA components. CCA dimensionality was significantly less for RTT compared to WT (**P <
0.01, Wilcoxon rank sum test). (H) For RTT animals (Left) motor code stereotypy was significantly correlated with CCA dimensionality (P < 0.01, Spearman’s
correlation), but not in WT animals (Right).
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groups: normal rats (Rattus norvegicus, n = 6, Sprague–Dawley;
Harlan Laboratories), normal rats with systemic pharmacological
changes to inhibition (n = 3), normal rats with pharmacological
changes to inhibition locally in motor cortex (n = 3), transgenic
RTT rats (n = 4, HET KO, SD-Mecp2tm1sage; Horizon Labo-
ratories), and RTT rats with systemically altered inhibition. The
rat model of RTT we study here has been shown to recapitulate
important dysfunctions and behaviors found in RTT humans,
including impaired motor functions (35–37). During each 30-min
recording session (n = 234 sessions in total), the rats behaved
freely—e.g., walking, grooming, and changing posture—on a 30
× 30-cm platform inside a dark enclosure. To capture body move-
ment, we recorded the three-dimensional positions of eight re-
flective beads positioned along the neck, back, rear hips, and the
base of the tail of each rat, using an infrared multicamera motion-
tracking system (Optitrack Flex: V100R2) with millimeter spatial
resolution and 10-ms temporal resolution. We note that basic
motility was not significantly different between normal (wild
type [WT]) rats and the RTT rats, but application of gamma-
Aminobutyric acid (GABA) agonist muscimol tended to cause
a decrease in animal movement (SI Appendix, Fig. S1). Neural
activity was recorded (Cerebus; Blackrock Microsystems) with a
32-channel, four-shank microelectrode array chronically im-
planted in deep layers (1,300μm from the pia) of caudal motor
cortex. The electrode array location targeted neurons associated
with hindlimb, forelimb, and trunk control (15–17, 38, 39). After
spike sorting (Kilosort) (40), we obtained 5,922 single units in
total (n = 2,079 from normal rats, n = 3,843 from RTT rats,
average n = 25 units per recording; SI Appendix, Fig. S2 A–C).
Spike rates were not significantly different between WT and
RTT rats, but were reduced by muscimol (mus) application, as
expected (SI Appendix, Fig. S2D).

Neuron–Body Interactions. Our first goal was to quantitatively
assess relationships between neurons and body movements. We
met this goal in two ways. First, we asked how each single neuron
fired in relation to body movements. For each neuron, we calcu-
lated a spike-triggered average of body speed in a 2-s window cen-
tered on the triggering spike time, similar to a cross-correlation
function (CCF) between the triggering neuron’s spikes and the
body speed (Fig. 1D). (See ref. 41 for similar analyses.) Hereafter,
we refer to this spike-triggered average body speed function as a
body cross-correlation function (BCCF). Here, for simplicity, we
used the center-of-mass speed of the eight motion-tracking beads
to calculate the BCCFs; below we consider more detailed aspects
of body motion. We obtained one BCCF for each neuron and
compared the shape of BCCFs across neurons in each recording.
The shape of a BCCF reveals whether and how the trigger
neuron leads or lags body movement. A flat line in the BCCF
would indicate a neuron that fires independently of the body.
Additional example BCCFs are shown in SI Appendix, Fig. S3.
Further considerations for interpreting BCCFs are in Discussion.

We found that neurons recorded in RTT animals tended to
have stereotyped BCCFs, while normal rats tended to have more
diverse BCCFs across neurons (e.g., Fig. 1 D, Top). To quantify
the similarity of BCCFs across neurons we calculated the correla-
tion of each pair of BCCFs and then averaged these correlations
across all pairs. Distributions of all of these pairwise correlations
are shown in Fig. 1 D, Bottom for the two example recordings in
Fig. 1 D, Top. Thus, we obtain a single number for each recording
that we interpret as a measure of the stereotypy of the motor
code. As summarized in Fig. 1 E, motor code stereotypy was
significantly higher (P < 0.01, t test) for RTT animals (0.40±
0.27, mean± SD) than for normal rats (0.28± 0.21) and was also
significantly increased due to enhancement of inhibition (P <
0.01, t test, 0.80± 0.21 for WT + systemic muscimol, 0.45± 0.30
for WT + local mus, 0.49± 0.25 for RTT + low-dose mus,
0.71± 0.26 for RTT + high-dose mus).

One limitation of our analysis of BCCFs was that it was based
on the center-of-mass speed of the rat, thus reducing the poten-
tially complex motion of the rat to a one-dimensional variable. To
account for higher-dimensional relationships between neurons
and body movements, we adopted a second approach based on
canonical correlation analysis (CCA) (for a review of CCA see
refs. 42 and 43). If many neurons have similar BCCFs, i.e., high
motor code stereotypy, this would suggest that they have a low-
dimensional motor code. We used CCA to test this possibility,
treating both the neural activity and body movements as high-
dimensional variables: n neural dimensions for a population
of n recorded neurons and eight body dimensions, and one
dimension for the speed of each tracking bead. CCA identifies
special directions in these two high-dimensional “spaces.” When
projected onto these special dimensions, the neural activity and
body activity are correlated with each other; the first dimension
(CC1) is most correlated, the second dimension (CC2) is the
second-most correlated, and so on (Fig. 1F). Here we define the
dimensionality of interactions between the neurons and the body
as the number of CCA dimensions with a statistically significant
correlation between brain and body (Materials and Methods). We
considered only periods when the animal was active to avoid
confounding movement complexity with general motivation to
move (Materials and Methods).

In line with our analysis of BCCFs, we found that the dimen-
sionality of interactions between neurons and the body for RTT
animals (1.67± 0.89) was significantly lower (P < 0.01, Wilcoxon
rank sum test) than that of WT rats (2.18± 0.90), as summa-
rized in Fig. 1G. Moreover, we found that CCA dimensionality
was significantly anticorrelated with motor code stereotypy in
RTT animals (P < 0.01, Spearman correlation, Fig. 1H). In
WT rats, CCA dimensionality did not correlate with motor code
stereotypy, which may explain why CCA dimensionality was not
reduced by muscimol for the WT group.

Neural Complexity. So far, the findings we present in Fig. 1
demonstrate that both MeCP2 disruption (RTT) and increased
inhibition result in a motor code with reduced complexity
compared to that in normal rats. This suggests that the complexity
of the neural activity by itself, independent of body movement,
could also be reduced in these cases. Alternatively, it is also
possible that the complexity of neural activity does not change
and that the trends in Fig. 1 manifest in subspaces of neural
activity that are not apparent when considering neural activity
separately from the body activity. To test these possibilities, we
quantified complexity of neural activity in three ways (Fig. 2).
First, we examined pairwise spike count correlations among the
recorded neurons. We constructed spike count time series for
each neuron and then computed the correlation coefficient of
these time series for each pair of neurons (Fig. 2 A and B);
distributions of such pairwise correlation coefficients are shown
in Fig. 2B for two example recordings, one from a normal rat
and the other from an RTT rat. We averaged across all pairwise
correlations to obtain a single number for each recording, termed
“synchrony” in Fig. 2C, which quantifies the tendency for neurons
to fire together. We interpret higher levels of synchrony as less
complex neural activity. Similar to the trends in Fig. 1, we found
that synchrony in RTT animals (0.13± 0.06) was significantly
higher (P < 0.01, t test) than in WT animals (0.10± 0.08).
These results are summarized for all recordings and experimental
groups in Fig. 2C. Pharmacological enhancement of inhibition
(both local and systemic) also resulted in increased synchrony
(P < 0.01, t test, 0.40± 0.19 for WT + systemic muscimol,
0.23± 0.14 for WT + local mus, 0.15± 0.07 for RTT + low-
dose mus, 0.24± 0.11 for RTT + high-dose mus). This result is
somewhat surprising considering that stronger inhibition is often
associated with reduced synchrony in theory (18, 44) and GABA
agonists can result in reduced synchrony (19), but our finding is
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Fig. 2. Decreased complexity of neural activity due to MeCP2 disruption and excessive inhibition. (A) Example spike rasters from a WT no-drug recording
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of all pairwise spike count correlations for the two recordings in A. We defined the average across all pairs as synchrony. (C) Summary of all recordings
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with greater synchrony (blue), PCA analysis shows that PC1 explains more variance. (E) Summary of the variance explained by PC1 follows the same trends
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similarities defines the “intracortical stereotypy” for each recording. (H) Summary of intracortical stereotypy for all recordings and experimental groups.
Normal rats (WT) were the least stereotyped; RTT and increased inhibition have elevated stereotypy. Asterisks indicate t-test significance: **P < 0.01. Dark
and light boxes delineate 0.25 to 0.75 and 0.05 to 0.95 quantiles, respectively. Lines mark mean (black) and median (white, red).

consistent with a recent study that applied low-dose muscimol in
motor cortex of awake rats (23).

Next, we assessed complexity of neural activity using principal
component analysis (PCA) (Materials and Methods). Similar to
CCA, PCA identifies special directions in high-dimensional neu-
ral space. But, instead of finding directions that are correlated
with the body (as in CCA), PCA finds directions along which
the neural activity has the greatest variance (without regard to
the body). The first principal component (PC1) explains the
most variance, the second component (PC2) explains the second-
most variance, and so on. In this context, higher-complexity
neural activity requires more components to explain its variance;
if a greater fraction of the total variance can be explained by
the first PC, we interpret this as lower complexity (Fig. 2D).
We found that the amount of variance explained by the first

principal component was highly correlated with our synchrony
measurements (SI Appendix, Fig. S4A; Pearson’s R = 0.96, P <
0.01). Like synchrony, the variance explained by PC1 for RTT
rats (26.97± 4.80) was significantly higher (P < 0.01, t test) than
in WT animals (24.49± 6.09). These results are summarized
for all recordings and experimental groups in Fig. 2E. Increased
inhibition (both local and systemic) also resulted in increased
variance explained by PC1 (P < 0.01, t test, 49.30± 15.55 for
WT + systemic muscimol, 37.31± 12.40 for WT + local mus,
29.70± 5.65 for RTT + low-dose mus, 34.73± 10.42 for RTT +
high-dose mus).

We quantified complexity of neural activity in a third way,
similar to our analysis of BCCFs and motor code stereotypy
(Fig. 1 D and E). For each single neuron, we computed a spike-
triggered average of the spike activity of the rest of the population

4 of 9 PNAS
https://doi.org/10.1073/pnas.2106378118

Li et al.
Collapse of complexity of brain and body activity due to excessive inhibition and MeCP2 disruption

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
3,

 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106378118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106378118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106378118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106378118/-/DCSupplemental
https://doi.org/10.1073/pnas.2106378118


www.manaraa.com

N
EU

RO
SC

IE
N

CE

of neurons from the same recording (Fig. 2F). We refer to these
as intracortical cross-correlation functions (ICCFs). ICCFs have
been used in previous studies of population coupling (23, 45,
46). We obtained one ICCF for each neuron in a recording and
compared the shape of the ICCFs across neurons. The shape of
an ICCF reveals whether and how the trigger neuron leads or lags
the activity of the network in which it is embedded. A flat line in
the ICCF would indicate a neuron that fires independently of the
population. Additional considerations for interpreting ICCFs are
in Discussion. After obtaining one ICCF for each single neuron,
we then asked how similar the ICCFs were across neurons.

We found that for normal rats, ICCFs were diverse: Some neu-
rons lead, others lag the population; some neurons had sharply
peaked ICCFs, others had broader peaks (Fig. 2F, gray). In
contrast, in the RTT rats, neurons tended to have stereotyped
ICCFs (Fig. 2F); each neuron tends to participate with the
population in the same way in RTT rats. We quantified this
stereotypy of intracortical interactions by calculating correlations
between all pairs of ICCFs (Fig. 2G) for each recording and then
averaging across all pairs, to obtain a single intracortical stereo-
typy number for each recording. Intracortical stereotypy was
correlated with synchrony, but not as strongly as PC1 variance
(SI Appendix, Fig. S4B; Pearson’s R = 0.54, P < 0.01). Compar-
ing across our experimental groups, we found that intracortical
stereotypy in RTT rats (0.90± 0.03) was significantly greater (P
< 0.01, t test) than in normal rats (0.86± 0.05), as summarized
in Fig. 2H. We found that systemic application of muscimol
increased intracortical stereotypy for both normal and RTT rats
(P < 0.01, t test, 0.95± 0.03 for WT + systemic muscimol, 0.92±
0.03 for RTT + low-dose mus, 0.95± 0.02 for RTT + high-dose
mus), but the increase due to local muscimol application was not
significant (0.88± 0.05 for WT + local mus).

Complexity of Body Motion. Figs. 1 and 2 show that both neural
activity and its relationship to body movements are reduced in
complexity for RTT animals and for enhanced inhibition. Does
this reduced complexity also manifest in the body movements
considered alone, without reference to neural activity? This is
a possibility but is not guaranteed; it could be that the trends
in Figs. 1 and 2 are fully explained by trends in neural activity,
with body movements playing a lesser role. To sort this out, we
next aimed to directly measure body movement complexity. We
did this in two ways. First, we used a PCA-based analysis of the
eight-dimensional bead speed data during periods when the rats
were not at rest (as for our CCA analysis in Fig. 1). Similar to our
PCA analysis of neural activity, we defined the complexity of body
movements based on the variance explained by different prin-
ciple components. However, correlations among neurons were
weak compared to correlations among the eight motion-tracking
beads on the body (Fig. 3A). Thus, the variance explained by
PC1 was always quite high and did not serve well as a measure
of complexity. A more sensitive measure of complexity was the
number of PCs needed to explain 95% of variance (termed N95
in Fig. 3C). As demonstrated in Fig. 3A, N95 was low when
body movements were highly correlated across all eight track-
ing beads (e.g., during locomotion) and N95 was higher when
different body parts moved more independently (e.g., moving
the head, grooming, or changing posture). This is also apparent
when examining how different body parts contribute to different
PCs for low and high N95 (Fig. 3B). Compared to high-N95
cases, low-N95 cases tended to have all beads contribute more
equally to PC1. We found that N95 for RTT rats (2.88± 0.87)
was significantly lower (P < 0.01, Wilcoxon rank sum test) than
that for normal rats (3.59± 0.87). Local muscimol application
also resulted in reduced N95 compared to that for normal rats
(P < 0.05, Wilcoxon rank sum test). In RTT animals, muscimol
application did not further lower N95. Fig. 3D summarizes N95
results across all recordings and experimental groups (3.19±

0.75 for WT + systemic muscimol, 3.11± 0.47 for WT + local
mus, 2.85± 0.71 for RTT + low-dose mus, 3.00± 0.95 for RTT
+ high-dose mus).

Finally, we assessed complexity of body motion with an alterna-
tive approach based on the recently developed B-SOiD algorithm
(47). B-SOiD was originally developed for classifying behaviors
based on limb position data obtained from markerless pose es-
timation software (e.g., DeepLabCut) (48). Here we applied the
B-SOiD algorithm to classify repeating behaviors based on the
data from our eight tracking beads (Materials and Methods). In
addition to the eight speeds we used in our PCA-based analysis,
B-SOiD also uses distances and angles among the eight beads
to identify behaviors. The output of the B-SOiD algorithm is a
behavioral state time series—a sequence of labels, with a unique
label for each behavior, and one label at each time point (e.g.,
Fig. 3E). After excluding periods of rest (as we did for our N95
and CCA analyses), we calculated the Shannon entropy of the
behavioral state time series (Materials and Methods). Entropy, in
this context, measures the complexity of behavior. The highest
possible entropy would occur for an animal that spent equal
time in every behavioral state. The lowest possible entropy (0
bits) would occur if the animal spent the entire time in one
behavioral state. We found that entropy was highest in the normal
rats (2.91± 0.46) and was significantly reduced (P < 0.05, t
test) for RTT animals (2.71± 0.54) and for systemically applied
muscimol (2.16± 1.20). Fig. 3F summarizes entropy across all
recordings and experimental groups (2.78± 0.30 for WT + local
mus, 2.57± 0.55 for RTT + low-dose mus, 1.93± 0.91 for RTT
+ high-dose mus).

Discussion
Here we have shown that MeCP2 disruption and increased inhi-
bition cause a similar reduction in complexity of the rat motor sys-
tem. Compared to normal rats with intact inhibition, this reduced
complexity manifested in multiple ways. First, the dimensionality
of the motor system was reduced. This lower dimensionality
was apparent at three levels: neural activity in caudal motor
cortex (Fig. 2 D and E), body movements (Fig. 3 A–D), and
interactions between neurons and body movements (Fig. 1 F and
G). Second, neural activity became more synchronized (Fig. 2 A–
C). Third, the way that different neurons participate in motor
system dynamics became more stereotyped. This stereotypy was
apparent when considering how each neuron participates in the
collective activity of the neural population (Fig. 2 G and H) and
when considering how each neuron relates to body movements
(Fig. 1 D and E).

Returning to the questions we posed at the start, one possible
interpretation of our observations is that MeCP2 disruptions
cause an imbalance favoring inhibition in motor cortex. This E/I
imbalance results in excessive neural synchrony, thereby limit-
ing the information capacity of the motor code; the commands
sent from cortex to spinal cord are less complex. In this view,
the reductions in complexity of behavior and neuron-to-body
relationships are a natural consequence of the less complex
commands issued from cortical neurons.

This interpretation is supported by the fact that local appli-
cation of muscimol in motor cortex of normal rats recapitulated
many of our observed differences between RTT rats and normal
rats. This observation is also consistent with previous studies that
point to an imbalance favoring too much inhibition in frontal ar-
eas as a circuit-level problem associated with RTT (32–34). Also
consistent with this possibility, we found that spike rates are lower
for RTT rats compared to normal rats (SI Appendix, Fig. S2).
However, this observation also deserves more careful attention.
A few aspects of our measurements of RTT rats did not parallel
the effects of local muscimol application in normal rats. The
most prominent example of this was the CCA dimensionality of
neuron–body interactions, which was not lower than normal for
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Fig. 3. Reduced body movement complexity due to MeCP2 disruption and excessive inhibition. (A) Examples of tracking bead speed data with higher
complexity (Top, speeds less correlated across beads) and lower complexity (Bottom, highly correlated bead speeds). Vertical scales differ for these two
examples. (B) Principal components for the two examples in A. Each component is scaled by the variance it explains. Color indicates bead location. For the
low-complexity example, note that PC1 has similar contributions from all beads and other PCs explain a relatively small amount of variance. (C) The number
of PCs needed to explain 95% of variance, i.e., N95, is lower for less complex body movements. (D) Summary of N95 for all recordings and experimental
groups reveals that N95 is highest for the WT rats. N95 is significantly lower for local muscimol application (*P < 0.05, Wilcoxon rank sum) and for RTT rats
(**P < 0.01). (E) Two example recordings showing behavioral classification time series from B-SOiD analysis. The example with less complex behavior, i.e.,
smaller entropy, spends most time in just a few behaviors. (F) Summary of B-SOiD entropy across all recordings and experimental groups. WT rats had the
highest entropy. Systemic muscimol application and RTT rats had significantly lower entropy (*P < 0.05). Muscimol also reduced entropy for the RTT group
(**P < 0.01).

local muscimol application. How is this possible, considering that
the synchrony and dimensionality of neural activity and dimen-
sionality of body movements were reduced for local muscimol
application? The most general answer to this question could be
compensatory mechanisms, which are a well-known challenge of
studying long-term E/I imbalance in neural disorders that may
differ for acute E/I manipulations (27). Nonetheless, a more
specific possible explanation is suggested by a recent study of neu-
rons in the same part of motor cortex. In that study we showed,
in normal rats, that the neurons that are most correlated with
each other are also the least correlated with body activity (23).

This relationship suggests that the prominent low-dimensional
neural activity that occurs for local muscimol in WT rats will not
be noticed by CCA, which selects dimensions that are correlated
with body movements. Our results in Fig. 1H suggest that this
distinction is present in normal rats, but may not be present in
RTT rats. Further studies will be required to better understand
these issues.

To further explore the role of inhibition in our RTT rat model,
we performed additional experiments in which we reduced
inhibition by applying systemic GABA antagonists. Our original
motivation for this was the possibility of rescuing normal motor
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function in RTT rats. However, we found that partially blocking
inhibition did not recover normal motor function. Perhaps
consistent with compensatory mechanisms, we found that RTT
rats were more sensitive to reduced inhibition than normal
rats, but we did not find a return to normal motor function
(SI Appendix, Fig. S5).

Thus far, we have interpreted our results in terms of motor cod-
ing. However, a potentially important additional interpretation
arises when considering our recording location more completely.
We chose our recording location because it has a high density of
corticospinal neurons related to hindlimb and forelimb control
(15, 17). But, this location also contains hindlimb somatosen-
sory neurons (38). Such sensory neurons could provide sensory
feedback used to guide hindlimb movements. In this context,
the reduced complexity we observed for RTT and muscimol may
manifest as limits on somatosensorimotor activity. Moreover,
there could be a purely sensory component to the reductions in
complexity we observed; sensory coding among the recorded neu-
rons could be stereotyped in RTT and for increased inhibition.
Sorting out these interesting possibilities requires further study.

Finally, we point out a limitation to our interpretations of
spike-triggered average body speed (BCCF) and spike-triggered
average population spike activity (ICCF). We interpreted these
spike-triggered average functions in terms of “interactions” be-
tween the triggering neuron and the body (BCCF, Fig. 1 D
and E) or interactions between the triggering neuron and the
population neural activity (ICCF, Fig. 2 F–H). However, in prin-
ciple, such spike-triggered averages can reveal not only cross-
correlations (i.e., interactions), but also the autocorrelation of
the triggering neuron. To clarify whether our results are related to
such autocorrelations we performed a control analysis, repeating
our measurements of motor code stereotypy and intracortical
stereotypy, but with a random time shift applied to the spike
times of each neuron. This control keeps autocorrelations in-
tact, but destroys cross-correlations. We found that motor code
stereotypy was very low and with no significant differences across
groups for this control (SI Appendix, Fig. S6A), indicating that
our motor code stereotypy is indeed appropriately interpreted
in terms of interactions (cross-correlations). However, as shown
in SI Appendix, Fig. S6 B and C, for intracortical stereotypy, au-
tocorrelations may play a role in the difference between WT and
RTT (but not for the effects of muscimol). This may indicate that
the functional implications of different autocorrelations (49–51)
should also be considered in etiology of RTT-related dysfunction.

Our work highlights the complex role of synchrony and high-
dimensional interactions in motor system function and dysfunc-
tion. We show that MeCP2 disruption can lead to excessive syn-
chrony and a collapse of complexity in the relationships among
cortical neurons and the relationships between neurons and the
body. Our findings suggest that stereotypy at the level of motor
coding may play a role in the stereotyped body movements of
Rett syndrome.

Materials and Methods
Animals. All procedures followed the Guide for the Care and Use of Labo-
ratory Animals of the National Institutes of Health and were approved by
University of Arkansas Institutional Animal Care and Use Committee (pro-
tocol 14048). We studied normal Sprague–Dawley male rats (n = 6, Harlan
Laboratories; 3 for systemic pharmacological manipulation and 3 for local
pharmacological manipulation) and transgenic MeCP2 knockout female rats
(n = 4, HET KO, SD-Mecp2tm1sage; Horizon Laboratory). The raw data from
the normal rats were collected and first reported in our previous study (23),
but reanalyzed here. The RTT rats have a 71-bp deletion in exon 4 and are
maintained by breeding heterozygous females with wild-type males, both
with Sprague–Dawley backgrounds. This animal model has been shown in
other studies to recapitulate important dysfunctions and behaviors found in
RTT humans including breathing abnormalities, unusual social interactions,
exaggerated response to auditory stimuli, reduced gross locomotion, weak
grip, and shortened lifespan (35, 36). In addition, these rats have also been

shown to manifest many of the same behavioral abnormalities found in
some RTT mouse models including stunted body growth, maloccluded teeth,
and reduced interest in social novelty (35).

Pharmacology. On each recording day, we performed one no-drug record-
ing first and one muscimol recording after at least 1 h for each rat. We used
muscimol to induce pharmacological enhancement of inhibition. Muscimol
is a GABAA agonist that increases the strength of inhibitory signaling
(52). For systemic pharmacological manipulation, the rats were given 2 mL
muscimol diluted in saline solution through intraperitoneal (i.p.) injection
50 min before every recording. For normal rats, the dose for muscimol was
2 mg/kg body weight; for RTT rats, we applied a lower dose varying from
0.25, to 0.5, to 1 to 2 mg/kg body weight because these animals seemed
to be more sensitive to altered inhibition than normal rats. In the main
text and figures, the concentration of 0.25 mg/kg body weight is referred
to as “low-dose muscimol”; higher concentrations are grouped into “high-
dose muscimol” for RTT animals. For local drug delivery, a microcannula
was included in the chronic implant (26-GA guide cannula, 33-GA injection
cannula; Plastics One), where the guide cannula had its tip touching, but
not penetrating the surface of cortex. The outer diameter of the guide
cannula tip was positioned 0.35 mm from the electrode array, such that
the center of the cannula was 0.5 mm posterior to bregma and 2.5 mm
lateral from midline. The injection cannula also did not penetrate the surface
of cortex. The cannula was used to inject 1 μL of muscimol dissolved in
sterile saline solution with a syringe pump (Bioanalytical Systems, Inc.) slowly
over a 5-min period. Multiple concentrations were tested and grouped for
local muscimol, including 80, 160, 320, 640, and 1,280 μM. For no-drug
recordings preceding systemic muscimol application a sham i.p. injection
of 2 mL saline was performed. For no-drug recordings preceding local
muscimol application, a sham injection of 1 μL saline was injected via the
microcannula.

Electrophysiology. Microelectrode arrays were chronically implanted 1,300
μm deep in a 2 × 2-mm craniotomy with the center located 0.5 mm posterior
to bregma and 2 mm lateral from midline. Thus, the recorded neurons were
located in deep layers of caudal motor cortex and at positions associated
with hindlimb, forelimb, and trunk movement (15, 17, 38). For the normal
rat systemic manipulation group, we used one type of microelectrode
array (A8x4–2mm-200–200–413-CM32; Neuronexus); for the normal rat local
manipulation group and RTT rats, we used a different type of microelectrode
array (Buzsaki32-CM32; Neuronexus) for improved spike sorting (53). For all
groups, the plane of microelectrode arrays was oriented perpendicular to
the dorsal surface and parallel to the midline. After implantation surgery,
the rats recovered for at least 2 wk before recordings began. During each
30-min recording, extracellular voltage fluctuations were recorded with 30-
kHz sample rate (Cerebus; Blackrock Microsystems). Signals were digitized by
a headstage connected to the electrode and transmitted by a commutator
connected to the recording system. Spike sorting was done with the Kilosort
(54), a fast and accurate spike sorting algorithm for high-channel count
probes (40). Then, we manually curated the spike sorting results with
the graphical user interface Phy (55). Criteria for a good unit included
clear and distinct waveform shapes, refractory periods in autocorrelograms,
stability in amplitudes, and distinct principal components in feature space
(SI Appendix, Fig. S2 A–C).

Motion Tracking. As in our previous work (23), body movement was
recorded with an infrared nine-camera motion tracking system (OptiTrack
Flex:V100R2), where the three-dimensional coordinate of eight reflective
beads (MCP1125, Naturalpoint; 3 mm diameter) temporarily adhered along
the spine from neck to tail and on each lateral side of rear hips. The tracking
system has 10 ms time resolution and millimeter spatial resolution. The
recordings took place in a dark enclosed space. During a 30-min recording,
the rats were allowed to freely move on a 30 × 30-cm platform placed at
the center of the recording space. The lightweight cable is attached to the
ceiling and the length is carefully measured so that it does not impede the
free movement of the rats. Each rat went through three acclimatization
sessions before recording with the same setup to avoid animal stress and
anxiety. After recordings were completed, the tracking trajectories were
manually corrected with the software Motive (56) and smoothed by a 5-Hz
low-pass filter. The speeds of center of mass and beads were then obtained
by calculating differentiated positions.

Body Motion Data Analysis. We used the distance traveled by the rat dur-
ing the recording to represent the general motility (SI Appendix, Fig. S1).
The distance traveled was calculated for each recording as the cumulative
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distance traveled by the center of mass of the tracking beads. Complexity
of movements was assessed in two ways: PCA-based analysis and B-SOiD
analysis (Fig. 3). For PCA-based analysis, we performed principal component
analysis on the speed of eight beads using the Matlab function “pca.” We
excluded time periods when the rats were at rest for more than 1.5 s. We
defined the animal to be “at rest” if it met two conditions: 1) speed of
center of mass less than 0.8 cm/s and 2) speed of each bead less than 1 cm/s.
Brief periods of motion, shorter than 0.5 s, preceded and followed by rest
were considered rest. After excluding rest periods and applying principal
component analysis, we counted the number of principal components that
explains 95% of variance, defined as N95.

Our B-SOiD analysis was performed using B-SOiD version 2.0 (57). Version
2.0 builds upon the first version, which was previously described (58). We
used 12 representative recordings (2 from each of the experimental groups:
WT, WT + systemic mus, WT + local mus, RTT, RTT + low mus, RTT + high
mus) to train a classifier. And then we used the classifier on all recordings.
We used the two-dimensional horizontal position coordinates (x and y in
Fig. 1A) of the eight tracking beads as input to B-SOiD. For classification,
B-SOiD 2.0 uses 28 distances among the eight tracking beads, 28 angles,
and the speeds of the eight beads. The interbead angles and speeds were
the most useful for B-SOiD classification (SI Appendix, Fig. S7). We set the B-
SOiD parameters as follows: Frame rate was 100 fps, training input fraction
was 1, cluster size range was 0.14 to 0.64%. The output of B-SOiD was a
behavioral state time series, s(t), where s is a label that ranges from 1 to m if
there are m behavioral states defined by B-SOiD. We excluded periods when
the animal was inactive (as done for CCA and N95 analysis). We found that
m = 26.4 ± 14.4 (mean ± SD) for our recordings. Considering all recordings
together, 58 behavioral states were identified that had at occurred for
at least 1 min (totaled over all recordings). To assess complexity of body
movements, we computed Shannon entropy H of the behavioral state time
series: H = −

∑
i pilog2(pi), where i ranges from 1 to m and pi = ni/N is the

probability of state i estimated by the number of occurrences ni of state i
divided by the total number of time points N.

Spike Data Analysis. Spike rate of a recording was obtained by the average
spike rate across all units during the recording (SI Appendix, Fig. S2D). Syn-
chrony was defined as the average of pairwise correlations of spike count
time series across all pairs of neurons (Fig. 2 A–C). The spike count time series
were calculated for each neuron using 1-s time bins. The PCA-based analysis
of spikes (Fig. 2 D and E) was also done on spike count time series with 1-s
time bins. We performed principal component analysis on the spike count
times series of eight randomly picked neurons in the recording and repeated
10 times to obtain an average for each recording. We used the percentage of
variance explained by the first component, named “PC1 variance explained,”
to represent complexity of neural activity.

Intracortical stereotypy (Fig. 2 F–H) was defined based on spike-triggered
average population activity functions, ICCFs. For each neuron (trigger neu-
ron), we counted the number of spikes from the population (with a 10-
ms time bin) in a ±1-s time window centered on the spike times of the
trigger neuron. We then averaged these spike-triggered spike counts across
all spikes from the trigger neuron to obtain ICCFs (Fig. 2F). Intracortical
stereotypy was calculated by averaging pairwise correlations of ICCFs across
all pairs of units as a single number for each recording (Fig. 2G).

Analysis of Interactions between Body and Neural Activity. Motor code
stereotypy (Fig. 1 D and E) was defined based on spike-triggered average
body speed functions, BCCFs. Similar to ICCFs, we obtained BCCFs for each
neuron (the trigger neuron) by averaging the speed of center of mass in

a ±1-s time window centered on the spike times of the trigger neuron
(Fig. 1D). BCCFs were then smoothed by a 1.5-Hz low-pass filter and nor-
malized by its mean. Motor code stereotypy was defined as the average
of pairwise correlations of BCCFs across all pairs of units to obtain a single
number for each recording.

We performed CCA on the two high-dimensional variables: neural activity
and body activity. For neural activity, we used the spike count time series
(with a 10-ms time bin) of eight randomly selected neurons as neural
dimensions; for body activity, we used the speeds of eight reflective beads
as body dimensions. We excluded time periods when the rats were at rest
(same as in PCA-based and B-SOiD analysis of body motion). Then, we
performed CCA (using Matlab function “canoncorr”) to obtain canonical
correlations between the two variables on each of eight CCA dimensions. We
defined a P value to measure whether the canonical correlation coefficient
in each dimension is significant, compared to chance. Our P value is the
probability of a chance-level canonical correlation coefficient being greater
than the measured value. To define chance-level canonical correlations, we
repeated the CCA calculation using randomly shuffled temporal order of
bead speeds measurements, keeping the temporal order of spike counts
fixed. We repeated this control CCA calculation 200 times to obtain 8 ×
200 = 1,600 chance-level canonical correlation coefficients. The dimensions
with P value <0.01 were defined as dimensions having significant corre-
lation between neural activity and body activity. We defined CCA dimen-
sionality as the number of CCA dimensions with significant correlation.
CCA dimensionality was calculated 10 times for each recording, each time
with eight different randomly selected neurons. Then we averaged over
these 10 repeats to finally obtain a single CCA dimensionality for each
recording.

Statistics. We examined the statistical significance of the difference be-
tween two groups using a P value of t test for continuous variables and
a Wilcoxon rank sum test for discrete variables. The P value represents the
probability of accepting the null hypothesis that the means of two groups
are not different. Spearman’s correlation coefficient and its corresponding P
value were used to test the correlations between two quantities in Fig. 1H.
Pearson’s correlation coefficient and its corresponding P value were used
in SI Appendix, Fig. S4. For both types of correlation, the P value represents
the null hypothesis that the two quantities are uncorrelated. We obtained
n = 234 recordings with at least 5 good units in total (n = 57 for WT,
n = 17 for WT + systemic mus, n = 23 for WT + local mus, n = 86 for RTT,
n = 37 for RTT + low mus, n = 14 for RTT + high mus). All these recordings
were included in our analysis of spike rate, synchrony, and intracortical
stereotypy. Recordings with less than 8 good units (n = 10) were excluded
for the PCA-based analysis of spikes and CCA dimensionality. For analysis of
distance traveled, complexity of movements (N95), B-SOiD entropy, motor
code stereotypy, and CCA dimensionality, n = 6 recordings were excluded
due to absence of motion tracking data. Recordings with no active period in
behavior (n = 4) were excluded for the analysis of complexity of movements
(N95), B-SOiD entropy, and CCA dimensionality.

Data Availability. All data presented in this paper are publicly available in
Figshare (DOI: 10.6084/m9.figshare.16559976) (59).
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